Skip to content

Margus Roo –

If you're inventing and pioneering, you have to be willing to be misunderstood for long periods of time

  • Cloudbreak Autoscale fix
  • Endast

apache hive how to join log files and use sql queries over joined data

Posted on September 22, 2014 - September 22, 2014 by margusja

Let’s create two very simple log files. Into log1.txt file lets put in example users problems log data and into log2.txt file solutions log data

log1.txt:

user1 | 2014-09-23 | error message 1
user2 | 2014-09-23 | error message 2
user3 | 2014-09-23 | error message 3
user4 | 2014-09-23 | error message 1
user5 | 2014-09-23 | error message 2
user6 | 2014-09-23 | error message 12
user7 | 2014-09-23 | error message 11
user1 | 2014-09-24 | error message 1
user2 | 2014-09-24 | error message 2
user3 | 2014-09-24 | error message 3
user4 | 2014-09-24 | error message 10
user1 | 2014-09-24 | error message 17
user2 | 2014-09-24 | error message 13
user1 | 2014-09-24 | error message 1

log2.txt:
user1 | support2 | solution message 1
user2 | support1 | solution message 2
user3 | support2 | solution message 3
user1 | support1 | solution message 4
user2 | support2 | solution message 5
user4 | support1 | solution message 6
user2 | support2 | solution message 7
user5 | support1 | solution message 8

Create two tables for datasets above:

hive> create table log1 (user STRING, date STRING, error STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘|’ STORED AS TEXTFILE;       

OK

Time taken: 5.968 seconds

hive> LOAD DATA INPATH ‘/user/margusja/hiveinput/log1.txt’ OVERWRITE INTO TABLE log1;                                             

Loading data to table default.log1

rmr: DEPRECATED: Please use ‘rm -r’ instead.

Moved: ‘hdfs://bigdata1.host.int:8020/apps/hive/warehouse/log1’ to trash at: hdfs://bigdata1.host.int:8020/user/margusja/.Trash/Current

Table default.log1 stats: [numFiles=1, numRows=0, totalSize=523, rawDataSize=0]

OK

Time taken: 4.687 seconds

hive> create table log2 (user STRING, support STRING, solution STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘|’ STORED AS TEXTFILE;

OK

Time taken: 0.997 seconds

hive> LOAD DATA INPATH ‘/user/margusja/hiveinput/log2.txt’ OVERWRITE INTO TABLE log2;                                                   

Loading data to table default.log2

rmr: DEPRECATED: Please use ‘rm -r’ instead.

Moved: ‘hdfs://bigdata1.host.int:8020/apps/hive/warehouse/log2’ to trash at: hdfs://bigdata1.host.int:8020/user/margusja/.Trash/Current

Table default.log2 stats: [numFiles=1, numRows=0, totalSize=304, rawDataSize=0]

OK

Time taken: 0.72 seconds

hive>

Now let’s make SQL over two datafile placed to HDFS storage using HIVE:

hive> select log1.user, log1.date, log1.error, log2.support, log2.solution from log2 join log1 on (log1.user = log2.user);

And result. We see now how two separated log file are joined together and now we can see in example that user2 has error message 2 in 2012-09-23 and support2 offered solution message 7.

user1  2014-09-23  error message 1 support2  solution message 1

user1  2014-09-23  error message 1 support1  solution message 4

user2  2014-09-23  error message 2 support1  solution message 2

user2  2014-09-23  error message 2 support2  solution message 5

user2  2014-09-23  error message 2 support2  solution message 7

user3  2014-09-23  error message 3 support2  solution message 3

user4  2014-09-23  error message 1 support1  solution message 6

user5  2014-09-23  error message 2 support1  solution message 8

user1  2014-09-24  error message 1 support2  solution message 1

user1  2014-09-24  error message 1 support1  solution message 4

user2  2014-09-24  error message 2 support1  solution message 2

user2  2014-09-24  error message 2 support2  solution message 5

user2  2014-09-24  error message 2 support2  solution message 7

user3  2014-09-24  error message 3 support2  solution message 3

user4  2014-09-24  error message 10 support1  solution message 6

user1  2014-09-24  error message 17 support2  solution message 1

user1  2014-09-24  error message 17 support1  solution message 4

user2  2014-09-24  error message 13 support1  solution message 2

user2  2014-09-24  error message 13 support2  solution message 5

user2  2014-09-24  error message 13 support2  solution message 7

user1  2014-09-24  error message 1 support2  solution message 1

user1  2014-09-24  error message 1 support1  solution message 4

Time taken: 34.561 seconds, Fetched: 22 row(s)

More cool things:

We can select only specified user:

hive> select log1.user, log1.date, log1.error, log2.support, log2.solution from log2 join log1 on (log1.user = log2.user) where log1.user like ‘%user1%’;

user1  2014-09-23  error message 1 support2  solution message 1

user1  2014-09-23  error message 1 support1  solution message 4

user1  2014-09-24  error message 1 support2  solution message 1

user1  2014-09-24  error message 1 support1  solution message 4

user1  2014-09-24  error message 17 support2  solution message 1

user1  2014-09-24  error message 17 support1  solution message 4

user1  2014-09-24  error message 1 support2  solution message 1

user1  2014-09-24  error message 1 support1  solution message 4

Time taken: 31.932 seconds, Fetched: 8 row(s)

We can query by date:

hive> select log1.user, log1.date, log1.error, log2.support, log2.solution from log2 join log1 on (log1.user = log2.user) where log1.date like ‘%2014-09-23%’;

user1  2014-09-23  error message 1 support2  solution message 1

user1  2014-09-23  error message 1 support1  solution message 4

user2  2014-09-23  error message 2 support1  solution message 2

user2  2014-09-23  error message 2 support2  solution message 5

user2  2014-09-23  error message 2 support2  solution message 7

user3  2014-09-23  error message 3 support2  solution message 3

user4  2014-09-23  error message 1 support1  solution message 6

user5  2014-09-23  error message 2 support1  solution message 8

Now lets forward our awesome join sentence to the next table – log3 where we are going to hold our joined data

hive> create table log3 (user STRING, date STRING, error STRING, support STRING, solution STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ‘ \t’ STORED AS TEXTFILE;

hive> insert table log3 select log1.user, log1.date, log1.error, log2.support, log2.solution from log2 join log1 on (log1.user = log2.user)

And now we cat use very simple sql to get data:

hive> select * from log3;

OK

user1  2014-09-23  error message 1 support2  solution message 1

user1  2014-09-23  error message 1 support1  solution message 4

user2  2014-09-23  error message 2 support1  solution message 2

user2  2014-09-23  error message 2 support2  solution message 5

user2  2014-09-23  error message 2 support2  solution message 7

user3  2014-09-23  error message 3 support2  solution message 3

user4  2014-09-23  error message 1 support1  solution message 6

user5  2014-09-23  error message 2 support1  solution message 8

user1  2014-09-24  error message 1 support2  solution message 1

user1  2014-09-24  error message 1 support1  solution message 4

user2  2014-09-24  error message 2 support1  solution message 2

user2  2014-09-24  error message 2 support2  solution message 5

user2  2014-09-24  error message 2 support2  solution message 7

user3  2014-09-24  error message 3 support2  solution message 3

user4  2014-09-24  error message 10 support1  solution message 6

user1  2014-09-24  error message 17 support2  solution message 1

user1  2014-09-24  error message 17 support1  solution message 4

user2  2014-09-24  error message 13 support1  solution message 2

user2  2014-09-24  error message 13 support2  solution message 5

user2  2014-09-24  error message 13 support2  solution message 7

user1  2014-09-24  error message 1 support2  solution message 1

user1  2014-09-24  error message 1 support1  solution message 4

Time taken: 0.075 seconds, Fetched: 22 row(s)

hive>

Posted in BigData, Hadoop

Post navigation

Driving 220V 10A relay with Atmega328p
Hadoop HDFS is CORRUPT

The Master

Categories

  • Apache
  • Apple
  • Assembler
  • Audi
  • BigData
  • BMW
  • C
  • Elektroonika
  • Fun
  • Hadoop
  • help
  • Infotehnoloogia koolis
  • IOT
  • IT
  • IT eetilised
  • Java
  • Langevarjundus
  • Lapsed
  • lastekodu
  • Linux
  • M-401
  • Mac
  • Machine Learning
  • Matemaatika
  • Math
  • MSP430
  • Muusika
  • neo4j
  • openCL
  • Õpetaja identiteet ja tegevusvõimekus
  • oracle
  • PHP
  • PostgreSql
  • ProM
  • R
  • Turvalisus
  • Varia
  • Windows
Proudly powered by WordPress | Theme: micro, developed by DevriX.