Skip to content

Margus Roo –

If you're inventing and pioneering, you have to be willing to be misunderstood for long periods of time

  • Cloudbreak Autoscale fix
  • Endast

Neural network

Posted on August 3, 2015 - August 5, 2015 by margusja

a = x1*w1 + x2*w2 + x3*w3 … xn*wn

Screen Shot 2015-08-03 at 15.47.44

 

Feedforward newwork

Screen Shot 2015-08-03 at 16.58.38

 

In case we have matrix 8X8 we need 64 input

Screen Shot 2015-08-03 at 17.06.55

Threshold

Screen Shot 2015-08-05 at 14.22.01

Bias

Screen Shot 2015-08-05 at 14.26.42

 

Learning

neuron_network_learning

 

Learning rate = 0.1
Expected output = 1
Actual output =  0
Error = 1

Weight Update:
wi = r E x + wi
w1 = 0.1 x 1 x 1 + w1
w2 = 0.1 x 1 x 1 + w2

New Weights:
w1 = 0.4
w2 = 0.4

neuron_network_learn2

 

Learning rate = 0.1
Expected output = 1
Actual output =  0
Error = 1

Weight Update:
wi = r E x + wi
w1 = 0.1 x 1 x 1 + w1
w2 = 0.1 x 1 x 1 + w2

New Weights:
w1 = 0.5
w2 = 0.5

neuron_network3

Learning rate = 0.1
Expected output = 1
Actual output =  1
Error = 0

No error,
training complete.

 

Lets implement it in Java
public class SimpleNN {

private double learning_rate;
private double expected_output;
private double actual_output;
private double error;

public static void main(String[] args) {

// initial
SimpleNN snn = new SimpleNN();
snn.learning_rate = 0.1;
snn.expected_output = 1;
snn.actual_output = 0;
snn.error = 1;

// inputs
int i1 = 1;
int i2 = 1;

// initial weigths
double w1 = 0.3;
double w2 = 0.3;

// loop untill we will get 0 error
while (true) {
System.out.println(“Error: “+ snn.error);
System.out.println(“w1: “+ w1);
System.out.println(“w2: “+ w2);
System.out.println(“actual output: “+ snn.actual_output);
w1 = snn.learning_rate * (snn.expected_output – snn.actual_output) * i1 + w1;
w2 = snn.learning_rate * (snn.expected_output – snn.actual_output) * i2 + w2;
snn.actual_output = w1 + w2;
if (snn.actual_output >= 0.99)
break;
}
System.out.println(“Final weights w1: “+ w1 + ” and w2: “+ w2);

}

}

Run it:
Error: 1.0
w1: 0.3
w2: 0.3
actual output: 0.0
Error: 1.0
w1: 0.4
w2: 0.4
actual output: 0.8
Error: 1.0
w1: 0.42000000000000004
w2: 0.42000000000000004
actual output: 0.8400000000000001
Error: 1.0
w1: 0.43600000000000005
w2: 0.43600000000000005
actual output: 0.8720000000000001
Error: 1.0
w1: 0.44880000000000003
w2: 0.44880000000000003
actual output: 0.8976000000000001
Error: 1.0
w1: 0.45904
w2: 0.45904
actual output: 0.91808
Error: 1.0
w1: 0.467232
w2: 0.467232
actual output: 0.934464
Error: 1.0
w1: 0.4737856
w2: 0.4737856
actual output: 0.9475712
Error: 1.0
w1: 0.47902848
w2: 0.47902848
actual output: 0.95805696
Error: 1.0
w1: 0.48322278399999996
w2: 0.48322278399999996
actual output: 0.9664455679999999
Error: 1.0
w1: 0.4865782272
w2: 0.4865782272
actual output: 0.9731564544
Error: 1.0
w1: 0.48926258176
w2: 0.48926258176
actual output: 0.97852516352
Error: 1.0
w1: 0.491410065408
w2: 0.491410065408
actual output: 0.982820130816
Error: 1.0
w1: 0.4931280523264
w2: 0.4931280523264
actual output: 0.9862561046528
Error: 1.0
w1: 0.49450244186112
w2: 0.49450244186112
actual output: 0.98900488372224
Final weights w1: 0.495601953488896 and w2: 0.495601953488896

 

So…Christopher CAN LEARN!!!

 

Neural network with AND logic.

0 & 0 = 0

0 & 1 = 0

1 & 0 = 0

1 & 1 = 1

Using neural network you can use only one perceptron

Screen Shot 2015-08-03 at 15.47.44

In paper calculated weights and AND logic

NN_AND

So we need to find weights fulfil conditions:

0 * w1 + 0 * w2 <= 1

0 * w1 + 1 * w2 <= 1

1 * w1 + 0 * w2 <= 1

1 * w1 + 1 * w2 = 1

Java code to implement this:
public class AndNeuronNet {

private double learning_rate;

private double threshold;

public static void main(String[] args) {

// initial
AndNeuronNet snn = new AndNeuronNet();
snn.learning_rate = 0.1;
snn.threshold = 1;

// AND function Training data
int[][][] trainingData = {
{{0, 0}, {0}},
{{0, 1}, {0}},
{{1, 0}, {0}},
{{1, 1}, {1}},
};

// Init weights
double[] weights = {0.0, 0.0};

snn.threshold = 1;

// loop untill we will get 0 error
while (true) {
int errorCount = 0;

for(int i=0; i < trainingData.length; i++){
System.out.println(“Starting weights: ” + Arrays.toString(weights));
System.out.println(“Inputs: ” + Arrays.toString(trainingData[i][0]));
// Calculate weighted input
double weightedSum = 0;
for(int ii=0; ii < trainingData[i][0].length; ii++) {
weightedSum += trainingData[i][0][ii] * weights[ii];
}
System.out.println(“Weightedsum in training: “+ weightedSum);

// Calculate output
int output = 0;
if(snn.threshold <= weightedSum){
output = 1;
}

System.out.println(“Target output: ” + trainingData[i][1][0] + “, ” + “Actual Output: ” + output);

// Calculate error
int error = trainingData[i][1][0] – output;
System.out.println(“Error: “+error);

// Increase error count for incorrect output
if(error != 0){
errorCount++;
}

// Update weights
for(int ii=0; ii < trainingData[i][0].length; ii++) {
weights[ii] += snn.learning_rate * error * trainingData[i][0][ii];
}

System.out.println(“New weights: ” + Arrays.toString(weights));
System.out.println();
}

System.out.println(“ErrorCount: “+ errorCount);
// If there are no errors, stop
if(errorCount == 0){
System.out.println(“Final weights: ” + Arrays.toString(weights));
System.exit(0);
}

}

}

}

Compile and run:

Starting weights: [0.0, 0.0]

Inputs: [0, 0]

Weightedsum in training: 0.0

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.0, 0.0]

Starting weights: [0.0, 0.0]

Inputs: [0, 1]

Weightedsum in training: 0.0

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.0, 0.0]

Starting weights: [0.0, 0.0]

Inputs: [1, 0]

Weightedsum in training: 0.0

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.0, 0.0]

Starting weights: [0.0, 0.0]

Inputs: [1, 1]

Weightedsum in training: 0.0

Target output: 1, Actual Output: 0

Error: 1

New weights: [0.1, 0.1]

ErrorCount: 1

Starting weights: [0.1, 0.1]

Inputs: [0, 0]

Weightedsum in training: 0.0

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.1, 0.1]

Starting weights: [0.1, 0.1]

Inputs: [0, 1]

Weightedsum in training: 0.1

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.1, 0.1]

Starting weights: [0.1, 0.1]

Inputs: [1, 0]

Weightedsum in training: 0.1

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.1, 0.1]

Starting weights: [0.1, 0.1]

Inputs: [1, 1]

Weightedsum in training: 0.2

Target output: 1, Actual Output: 0

Error: 1

New weights: [0.2, 0.2]

ErrorCount: 1

Starting weights: [0.2, 0.2]

Inputs: [0, 0]

Weightedsum in training: 0.0

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.2, 0.2]

Starting weights: [0.2, 0.2]

Inputs: [0, 1]

Weightedsum in training: 0.2

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.2, 0.2]

Starting weights: [0.2, 0.2]

Inputs: [1, 0]

Weightedsum in training: 0.2

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.2, 0.2]

Starting weights: [0.2, 0.2]

Inputs: [1, 1]

Weightedsum in training: 0.4

Target output: 1, Actual Output: 0

Error: 1

New weights: [0.30000000000000004, 0.30000000000000004]

ErrorCount: 1

Starting weights: [0.30000000000000004, 0.30000000000000004]

Inputs: [0, 0]

Weightedsum in training: 0.0

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.30000000000000004, 0.30000000000000004]

Starting weights: [0.30000000000000004, 0.30000000000000004]

Inputs: [0, 1]

Weightedsum in training: 0.30000000000000004

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.30000000000000004, 0.30000000000000004]

Starting weights: [0.30000000000000004, 0.30000000000000004]

Inputs: [1, 0]

Weightedsum in training: 0.30000000000000004

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.30000000000000004, 0.30000000000000004]

Starting weights: [0.30000000000000004, 0.30000000000000004]

Inputs: [1, 1]

Weightedsum in training: 0.6000000000000001

Target output: 1, Actual Output: 0

Error: 1

New weights: [0.4, 0.4]

ErrorCount: 1

Starting weights: [0.4, 0.4]

Inputs: [0, 0]

Weightedsum in training: 0.0

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.4, 0.4]

Starting weights: [0.4, 0.4]

Inputs: [0, 1]

Weightedsum in training: 0.4

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.4, 0.4]

Starting weights: [0.4, 0.4]

Inputs: [1, 0]

Weightedsum in training: 0.4

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.4, 0.4]

Starting weights: [0.4, 0.4]

Inputs: [1, 1]

Weightedsum in training: 0.8

Target output: 1, Actual Output: 0

Error: 1

New weights: [0.5, 0.5]

ErrorCount: 1

Starting weights: [0.5, 0.5]

Inputs: [0, 0]

Weightedsum in training: 0.0

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.5, 0.5]

Starting weights: [0.5, 0.5]

Inputs: [0, 1]

Weightedsum in training: 0.5

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.5, 0.5]

Starting weights: [0.5, 0.5]

Inputs: [1, 0]

Weightedsum in training: 0.5

Target output: 0, Actual Output: 0

Error: 0

New weights: [0.5, 0.5]

Starting weights: [0.5, 0.5]

Inputs: [1, 1]

Weightedsum in training: 1.0

Target output: 1, Actual Output: 1

Error: 0

New weights: [0.5, 0.5]

ErrorCount: 0

Final weights: [0.5, 0.5]

So what we did?

Basically we iterated over the training set until we found good weights to fulfil condition for all records in training set:

if  (threshold <= input1[i] * weight1 + input2[i] * weight2) then (if 0 == target[1] done else error and loop again) else (if 1 == target[i] done else error and loop again)

With one perceptor we can solve boolean problems. In picture below you can see weights. Neural network can find them.

Screen Shot 2015-08-05 at 13.50.45

Posted in Machine Learning, Math

Post navigation

Fuzzy
Confusion matrix for two classes and some performance measures for classifiers

The Master

Categories

  • Apache
  • Apple
  • Assembler
  • Audi
  • BigData
  • BMW
  • C
  • Elektroonika
  • Fun
  • Hadoop
  • help
  • Infotehnoloogia koolis
  • IOT
  • IT
  • IT eetilised
  • Java
  • Langevarjundus
  • Lapsed
  • lastekodu
  • Linux
  • M-401
  • Mac
  • Machine Learning
  • Matemaatika
  • Math
  • MSP430
  • Muusika
  • neo4j
  • openCL
  • Õpetaja identiteet ja tegevusvõimekus
  • oracle
  • PHP
  • PostgreSql
  • ProM
  • R
  • Turvalisus
  • Varia
  • Windows
Proudly powered by WordPress | Theme: micro, developed by DevriX.