Skip to content

Margus Roo –

If you're inventing and pioneering, you have to be willing to be misunderstood for long periods of time

  • Cloudbreak Autoscale fix
  • Endast

Category: IT

Lained on ilusad

Posted on February 25, 2016 - February 25, 2016 by margusja

counter

Posted in IT

FPGA

Posted on February 6, 2016 by margusja

Saabus mulle uus mänguasi

2016-02-06 11.04.11

Tegu on arendusplaadiga, kus puudub traditsiooniline arhitektuur, sisseehitatud instruktorid.

Arendajal on kasutada ainult AND, OR ja invert loogikalülitused, millest siis vajaminev funktsionaalsus VHDL keele abil realiseeritakse.

Kui võtta võrdluseks MCU, siis tegu on praktiliselt väikese arvutiga, kus on Harvard arhitektuur. Kasutajal on valida erinevad kõrgkeeled nagu C või realiseerida oma loogika assembler keeles. Samas sõltub kasutaja otseselt arhitektuurist ja kasutatava MCU instruktoritest

Posted in IT

SOLR + SIREn hints

Posted on December 3, 2015 - December 3, 2015 by margusja

To index field as date.

Document:

{
 "title": "Alice in Wonderland",
 "year": "1865",
 "date": "1865-01-01T00:00:00Z,
 "content": "Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do."
}

date field indexed as text.

{
 "title": "Alice in Wonderland",
 "year": "1865",
 "date": {"_datatype_":"http://www.w3.org/2001/XMLSchema#date", "_value_": "1865-01-01T00:00:00Z"},
 "content": "Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do."
}

date field indexed as date and you can query like:
{
    "node" : {
       "attribute": "date",
        "query" : "xsd:date([NOW-10YEARS TO NOW])"
    }
}
JOIN 

fl=xxx,yyy & {!join from=id to=patient.reference}name.family:JUKS
IN SQL
SELECT xxx, yyy
FROM collection1
WHERE patient.reference IN (SELECT id FROM collection1 where name.family = "JUKS")
Posted in IT

Read logs with Apache-drill

Posted on October 15, 2015 by margusja

Screen Shot 2015-10-15 at 21.24.59

Posted in IT

Fuzzy

Posted on July 30, 2015 - July 30, 2015 by margusja

We start by defining the input temperature states using “membership functions”:
Fuzzy

 

With this scheme, the input variable’s state no longer jumps abruptly from one state to the next. Instead, as the temperature changes, it loses value in one membership function while gaining value in the next. In other words, its ranking in the category of cold decreases as it becomes more highly ranked in the warmer category.

At any sampled timeframe, the “truth value” of the brake temperature will almost always be in some degree part of two membership functions: i.e.: ‘0.6 nominal and 0.4 warm’, or ‘0.7 nominal and 0.3 cool’, and so on.

 

In practice, the controller accepts the inputs and maps them into their membership functions and truth values. These mappings are then fed into the rules. If the rule specifies an AND relationship between the mappings of the two input variables, as the examples above do, the minimum of the two is used as the combined truth value; if an OR is specified, the maximum is used. The appropriate output state is selected and assigned a membership value at the truth level of the premise. The truth values are then defuzzified. For an example, assume the temperature is in the “cool” state, and the pressure is in the “low” and “ok” states. The pressure values ensure that only rules 2 and 3 fire:

 

Fuzzy_control_-_Rule_2_evaluation Fuzzy_control_-_Rule_3_evaluation

 

https://en.wikipedia.org/wiki/Fuzzy_control_system

Posted in Elektroonika, IT

Find your forgotten WIFI password

Posted on July 27, 2015 by margusja

Screen Shot 2015-07-27 at 15.08.02

Posted in IT

apache-spark 1.2.0

Posted on February 11, 2015 by margusja

[INFO] ————————————————————————
[INFO] Reactor Summary:
[INFO]
[INFO] Spark Project Parent POM ……………………… SUCCESS [ 6.556 s]
[INFO] Spark Project Networking ……………………… SUCCESS [ 9.198 s]
[INFO] Spark Project Shuffle Streaming Service ………… SUCCESS [ 6.381 s]
[INFO] Spark Project Core …………………………… SUCCESS [03:50 min]
[INFO] Spark Project Bagel ………………………….. SUCCESS [ 54.482 s]
[INFO] Spark Project GraphX …………………………. SUCCESS [06:40 min]
[INFO] Spark Project Streaming ………………………. SUCCESS [08:14 min]
[INFO] Spark Project Catalyst ……………………….. SUCCESS [11:32 min]
[INFO] Spark Project SQL ……………………………. SUCCESS [14:46 min]
[INFO] Spark Project ML Library ……………………… SUCCESS [19:02 min]
[INFO] Spark Project Tools ………………………….. SUCCESS [01:05 min]
[INFO] Spark Project Hive …………………………… SUCCESS [14:48 min]
[INFO] Spark Project REPL …………………………… SUCCESS [04:39 min]
[INFO] Spark Project Assembly ……………………….. SUCCESS [04:55 min]
[INFO] Spark Project External Twitter ………………… SUCCESS [ 50.438 s]
[INFO] Spark Project External Flume Sink ……………… SUCCESS [ 59.100 s]
[INFO] Spark Project External Flume ………………….. SUCCESS [01:59 min]
[INFO] Spark Project External MQTT …………………… SUCCESS [ 41.876 s]
[INFO] Spark Project External ZeroMQ …………………. SUCCESS [01:11 min]
[INFO] Spark Project External Kafka ………………….. SUCCESS [01:40 min]
[INFO] Spark Project Examples ……………………….. SUCCESS [09:52 min]
[INFO] ————————————————————————

Posted in IT

One of the best explanation about bitwise operators

Posted on February 2, 2015 by margusja

Screenshot 2015-02-02 22.52.37

Posted in IT

Haskell – beauty of couding – get perfect numbers

Posted on January 11, 2015 - January 11, 2015 by margusja

Recently did some haskell coding and just some lines to explain my enthusiasm.

Let’s try to calculate  perfect numbers:

First I have helper function factors to get number factors:

factors :: Int -> [Int]
factors a = [ x | x <- [1..a], y <- [1..a], x*y == a ]

and the main function is:

perfects :: Int -> [Int]
perfects x = [a | a <- [1..x], sum (init(factors a)) == a, a <= x]

to get perfect numbers under limit believe me you want to limit the calculation 🙂

Posted in IT

Tubli poiss – viis – istu

Posted on January 16, 2014 - January 16, 2014 by margusja

Screen Shot 2014-01-16 at 17.46.32

Posted in IT

Posts navigation

Older posts
Newer posts

The Master

Categories

  • Apache
  • Apple
  • Assembler
  • Audi
  • BigData
  • BMW
  • C
  • Elektroonika
  • Fun
  • Hadoop
  • help
  • Infotehnoloogia koolis
  • IOT
  • IT
  • IT eetilised
  • Java
  • Langevarjundus
  • Lapsed
  • lastekodu
  • Linux
  • M-401
  • Mac
  • Machine Learning
  • Matemaatika
  • Math
  • MSP430
  • Muusika
  • neo4j
  • openCL
  • Õpetaja identiteet ja tegevusvõimekus
  • oracle
  • PHP
  • PostgreSql
  • ProM
  • R
  • Turvalisus
  • Varia
  • Windows
Proudly powered by WordPress | Theme: micro, developed by DevriX.