Skip to content

Margus Roo –

If you're inventing and pioneering, you have to be willing to be misunderstood for long periods of time

  • Cloudbreak Autoscale fix
  • Endast

Category: Machine Learning

Multivariate data detect outliers with mahout and Mahalanobis distance algorithm

Posted on August 14, 2014 by margusja

I am not mathematician but one of our project needed that we will find outliers from multivariate population. As I understand Mahalanobis distance is one widely used algorithm.  This is example with very simple dataset to show distance between normal points and outlier.

So my simple dataset is two dimension so we can display it in x;y graph:

{1;2, 2;4, 3;6, 3;2, 4;8}

Let’s put it into paper

2014-08-14 14.02.06

 

the outlier is clearly visible – 3;2

Now I use mahout MahalanobisDistanceMeasure package (org.apache.mahout.common.distance.MahalanobisDistanceMeasure)

 

package com.deciderlab.MahalanobisDistanceMeasure;

import org.apache.mahout.common.distance.MahalanobisDistanceMeasure;

import org.apache.mahout.math.Matrix;

import org.apache.mahout.math.RandomAccessSparseVector;

import org.apache.mahout.math.SparseMatrix;

import org.apache.mahout.math.Vector;

publicclass DistanceMahalanobisSample {

  publicstaticvoid main(String[] args) {

    double[][] d = { { 1.0, 2.0 }, { 2.0, 4.0 },

        { 3.0, 6.0 }, { 3.0, 2.0 }, { 4.0, 8.0 } };

    Vector v1 = new RandomAccessSparseVector(2);

    v1.assign(d[0]);

    Vector v2 = new RandomAccessSparseVector(2);

    v2.assign(d[1]);

    Vector v3 = new RandomAccessSparseVector(2);

    v3.assign(d[2]);

    Vector v4 = new RandomAccessSparseVector(2);

    v4.assign(d[3]);

    Vector v5 = new RandomAccessSparseVector(2);

    v5.assign(d[4]);

    Matrix matrix = new SparseMatrix(2, 2);

    matrix.assignRow(0, v1);

    matrix.assignRow(1, v2);

    double distance1;

    double distance2;

    MahalanobisDistanceMeasure dmM = new MahalanobisDistanceMeasure();

    dmM.setInverseCovarianceMatrix(matrix);

    distance0 = dmM.distance(v2, v1);

    distance1 = dmM.distance(v2, v3);

    distance2 = dmM.distance(v2, v4);

    System.out.println(“d0=” + distance0 +  ” ,d1=” + distance1 + “, d2=” + distance2);

  }

}

Compile it. I use maven to deal with dependencies.

Run it:

[margusja@vm37 MahalanobisDistanceMeasure]$ hadoop jar /var/www/html/margusja/MahalanobisDistanceMeasure/target/MahalanobisDistanceMeasure-1.0-SNAPSHOT.jar com.deciderlab.MahalanobisDistanceMeasure.DistanceMahalanobisSample

d0=5.0 ,d1=5.0, d2=3.0

So, distance between v1 (1;2) and v2 (2;4) is 5.0 and distance between v2 (2;4) and v3(3;6) is 5.0 but distance between v2(2;4) and v4 (3;2) is 3.0. So it allows me mark record (3;2) mark as outlier.

 

Posted in Machine Learning

Apache-Spark map-reduce quick overview

Posted on June 19, 2014 by margusja

I have file containing lines with text. I’d like to count all chars in the text. In case we have small file this is not the problem but what if we have huge text file. In example 1000TB distributed over Hadoop-HDFS.

Apache-Spark is one alternative for that job.

Big picture

Spark map-reduce

Now let’s dig into details


Apache Spark is a fast and general-purpose cluster computing system.
It provides high-level APIs in Java, Scala and Python,
and an optimized engine that supports general execution graphs.
It also supports a rich set of higher-level tools including Shark (Hive on Spark),
Spark SQL for structured data,
MLlib for machine learning,
GraphX for graph processing, and Spark Streaming.

This is java (spark) code:

String master = "local[3]";
String appName = "SparkReduceDemo";

SparkConf conf = new SparkConf().setAppName(appName).setMaster(master);
JavaSparkContext sc = new JavaSparkContext(conf);

JavaRDD file = sc.textFile(“data.txt”); // this is our text file

// this is map function – splits tasks between workers
JavaRDD lineLengths = file.map(new Function<String, Integer>() {
public Integer call(String s) {
System.out.println(“line: “+s + ” “+ s.length());
return s.length();
}
});

// this is reduce function – collects results from workers for driver programm
int totalLength = lineLengths.reduce(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer a, Integer b) {
System.out.println(“a: “+ a);
System.out.println(“b: “+ b);
return a + b;
}
});

System.out.println(“Lenght: “+ totalLength);

compile and run. Let’s analyse result:


14/06/19 10:34:42 INFO SecurityManager: Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
14/06/19 10:34:42 INFO SecurityManager: Changing view acls to: margusja
14/06/19 10:34:42 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(margusja)
14/06/19 10:34:42 INFO Slf4jLogger: Slf4jLogger started
14/06/19 10:34:42 INFO Remoting: Starting remoting
14/06/19 10:34:43 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://spark@10.10.5.12:52116]
14/06/19 10:34:43 INFO Remoting: Remoting now listens on addresses: [akka.tcp://spark@10.10.5.12:52116]
14/06/19 10:34:43 INFO SparkEnv: Registering MapOutputTracker
14/06/19 10:34:43 INFO SparkEnv: Registering BlockManagerMaster
14/06/19 10:34:43 INFO DiskBlockManager: Created local directory at /var/folders/vm/5pggdh2x3_s_l6z55brtql3h0000gn/T/spark-local-20140619103443-bc5e
14/06/19 10:34:43 INFO MemoryStore: MemoryStore started with capacity 74.4 MB.
14/06/19 10:34:43 INFO ConnectionManager: Bound socket to port 52117 with id = ConnectionManagerId(10.10.5.12,52117)
14/06/19 10:34:43 INFO BlockManagerMaster: Trying to register BlockManager
14/06/19 10:34:43 INFO BlockManagerInfo: Registering block manager 10.10.5.12:52117 with 74.4 MB RAM
14/06/19 10:34:43 INFO BlockManagerMaster: Registered BlockManager
14/06/19 10:34:43 INFO HttpServer: Starting HTTP Server
14/06/19 10:34:43 INFO HttpBroadcast: Broadcast server started at http://10.10.5.12:52118
14/06/19 10:34:43 INFO HttpFileServer: HTTP File server directory is /var/folders/vm/5pggdh2x3_s_l6z55brtql3h0000gn/T/spark-b5c0fd3b-d197-4318-9d1d-7eda2b856b3c
14/06/19 10:34:43 INFO HttpServer: Starting HTTP Server
14/06/19 10:34:43 INFO SparkUI: Started SparkUI at http://10.10.5.12:4040
2014-06-19 10:34:43.751 java[816:1003] Unable to load realm info from SCDynamicStore
14/06/19 10:34:43 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/06/19 10:34:44 INFO MemoryStore: ensureFreeSpace(146579) called with curMem=0, maxMem=77974732
14/06/19 10:34:44 INFO MemoryStore: Block broadcast_0 stored as values to memory (estimated size 143.1 KB, free 74.2 MB)
14/06/19 10:34:44 INFO FileInputFormat: Total input paths to process : 1
14/06/19 10:34:44 INFO SparkContext: Starting job: reduce at SparkReduce.java:50
14/06/19 10:34:44 INFO DAGScheduler: Got job 0 (reduce at SparkReduce.java:50) with 2 output partitions (allowLocal=false)
14/06/19 10:34:44 INFO DAGScheduler: Final stage: Stage 0(reduce at SparkReduce.java:50)
14/06/19 10:34:44 INFO DAGScheduler: Parents of final stage: List()
14/06/19 10:34:44 INFO DAGScheduler: Missing parents: List()
14/06/19 10:34:44 INFO DAGScheduler: Submitting Stage 0 (MappedRDD[2] at map at SparkReduce.java:43), which has no missing parents
14/06/19 10:34:44 INFO DAGScheduler: Submitting 2 missing tasks from Stage 0 (MappedRDD[2] at map at SparkReduce.java:43)
14/06/19 10:34:44 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
14/06/19 10:34:44 INFO TaskSetManager: Starting task 0.0:0 as TID 0 on executor localhost: localhost (PROCESS_LOCAL)
14/06/19 10:34:44 INFO TaskSetManager: Serialized task 0.0:0 as 1993 bytes in 3 ms
14/06/19 10:34:44 INFO TaskSetManager: Starting task 0.0:1 as TID 1 on executor localhost: localhost (PROCESS_LOCAL)
14/06/19 10:34:44 INFO TaskSetManager: Serialized task 0.0:1 as 1993 bytes in 0 ms
14/06/19 10:34:44 INFO Executor: Running task ID 0
14/06/19 10:34:44 INFO Executor: Running task ID 1
14/06/19 10:34:44 INFO BlockManager: Found block broadcast_0 locally
14/06/19 10:34:44 INFO BlockManager: Found block broadcast_0 locally
14/06/19 10:34:44 INFO HadoopRDD: Input split: file:/Users/margusja/Documents/workspace/Spark_1.0.0/data.txt:0+192
14/06/19 10:34:44 INFO HadoopRDD: Input split: file:/Users/margusja/Documents/workspace/Spark_1.0.0/data.txt:192+193
14/06/19 10:34:44 INFO deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
14/06/19 10:34:44 INFO deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
14/06/19 10:34:44 INFO deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
14/06/19 10:34:44 INFO deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
14/06/19 10:34:44 INFO deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
14/06/19 10:34:44 INFO deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
line: Apache Spark is a fast and general-purpose cluster computing system. 69
line: It provides high-level APIs in Java, Scala and Python, 55
a: 69
b: 55
line: and an optimized engine that supports general execution graphs. 64
a: 124
b: 64
line: It also supports a rich set of higher-level tools including Shark (Hive on Spark), 83
a: 188
b: 83
line: Spark SQL for structured data, 31
line: MLlib for machine learning, 28
a: 31
b: 28
line: GraphX for graph processing, and Spark Streaming. 49
a: 59
b: 49
14/06/19 10:34:44 INFO Executor: Serialized size of result for 0 is 675
14/06/19 10:34:44 INFO Executor: Serialized size of result for 1 is 675
14/06/19 10:34:44 INFO Executor: Sending result for 1 directly to driver
14/06/19 10:34:44 INFO Executor: Sending result for 0 directly to driver
14/06/19 10:34:44 INFO Executor: Finished task ID 1
14/06/19 10:34:44 INFO Executor: Finished task ID 0
14/06/19 10:34:44 INFO TaskSetManager: Finished TID 0 in 88 ms on localhost (progress: 1/2)
14/06/19 10:34:44 INFO TaskSetManager: Finished TID 1 in 79 ms on localhost (progress: 2/2)
14/06/19 10:34:44 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
14/06/19 10:34:44 INFO DAGScheduler: Completed ResultTask(0, 0)
14/06/19 10:34:44 INFO DAGScheduler: Completed ResultTask(0, 1)
14/06/19 10:34:44 INFO DAGScheduler: Stage 0 (reduce at SparkReduce.java:50) finished in 0.110 s
a: 271
b: 108
14/06/19 10:34:45 INFO SparkContext: Job finished: reduce at SparkReduce.java:50, took 0.2684 s
Lenght: 379

(r) above a|b means task was reduce.

2014-06-19 10.47.49

Posted in BigData, Machine Learning

How to motivate yourself to discover new technology

Posted on June 13, 2014 - June 18, 2014 by margusja

There is apache-spark.  I installed it examined examples and run them. Worked. Now what?

One way is to go to linkedin and mark yourself now as the expert of spark and forget the topic.

Another way is to create a interesting problem and try to solve it. After that you may go to the linkedin and mark yourself as a expert 😉

So here is my prolem

2014-06-13 12.17.35

What do I have here. From the left to right. Apache-kafka is receives stream like string “a b c” thous are quadratic equation‘s (ax2 + bx + c = 0) input.

Apache-Spark is going to resolve quadratic equation and saves input parameters and results x1 and x2 to hbase.

The big picture

Screen Shot 2014-06-13 at 13.37.05

 

Screen Shot 2014-06-18 at 18.35.26

As you see now the day is much more interesting 🙂

On let’s jump into technology.

First I am going to create HBase table with one column family:

hbase(main):027:0> create ‘rootvorrand’, ‘info’

hbase(main):043:0> describe ‘rootvorrand’
DESCRIPTION ENABLED
‘rootvorrand’, {NAME => ‘info’, DATA_BLOCK_ENCODING => ‘NONE’, BLOOMFILTER => ‘ROW’, REPLICATION_SCOPE => ‘0’, VERSIONS => ‘1’, COMPRESSION => ‘NONE’, MIN_VERSIONS => ‘0’, TT true
L => ‘2147483647’, KEEP_DELETED_CELLS => ‘false’, BLOCKSIZE => ‘65536’, IN_MEMORY => ‘false’, BLOCKCACHE => ‘true’}

1 row(s) in 0.0330 seconds

I can see my new table in UI too

Screen Shot 2014-06-13 at 12.33.19

 

Now I going to create apache-kafka topic with 3 replica and 1 partition

margusja@IRack:~/kafka_2.9.1-0.8.1.1$ bin/kafka-topics.sh –create –topic rootvorrand –partitions 1 –replication-factor 3 –zookeeper vm24:2181

margusja@IRack:~/kafka_2.9.1-0.8.1.1$ bin/kafka-topics.sh –describe –topic rootvorrand –zookeeper vm24.dbweb.ee:2181
Topic:rootvorrand PartitionCount:1 ReplicationFactor:3 Configs:
Topic: rootvorrand Partition: 0 Leader: 3 Replicas: 3,2,1 Isr: 3,2,1

Add some input data

Screen Shot 2014-06-13 at 14.38.09

Now lets set up development environment in Eclipse. I need some external jars. As you can see I am using the latest apache-spark 1.0.0 released about week ago.

 

Screen Shot 2014-06-17 at 12.19.04

import java.io.IOException;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.regex.Pattern;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.*;

import scala.Tuple2;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.HTableInterface;
import org.apache.hadoop.hbase.client.HTablePool;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.util.Bytes;

public class KafkaSparkHbase {

private static final Pattern SPACE = Pattern.compile(” “);
private static HTable table;

public static void main(String[] args) {

String topic = “rootvorrand”;
int numThreads = 1;
String zkQuorum = “vm38:2181,vm37:2181,vm24:2181”;
String KafkaConsumerGroup = “sparkScript”;
String master = “spark://dlvm2:7077”;

// HBase config
Configuration conf = HBaseConfiguration.create();
conf.set(“hbase.defaults.for.version”,”0.96.0.2.0.6.0-76-hadoop2″);
conf.set(“hbase.defaults.for.version.skip”,”true”);
conf.set(“hbase.zookeeper.quorum”, “vm24,vm38,vm37”);
conf.set(“hbase.zookeeper.property.clientPort”, “2181”);
conf.set(“hbase.rootdir”, “hdfs://vm38:8020/user/hbase/data”);

try {
table = new HTable(conf, “rootvorrand”);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

//SparkConf sparkConf = new SparkConf().setAppName(“KafkaSparkHbase”).setMaster(master).setJars(jars);

JavaStreamingContext jssc = new JavaStreamingContext(master, “KafkaWordCount”,
new Duration(2000), System.getenv(“SPARK_HOME”),
JavaStreamingContext.jarOfClass(KafkaSparkHbase.class));

//JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(2000));

Map<String, Integer> topicMap = new HashMap<String, Integer>();
topicMap.put(topic, numThreads);
JavaPairReceiverInputDStream<String, String> messages = KafkaUtils.createStream(jssc, zkQuorum, KafkaConsumerGroup, topicMap);

JavaDStream lines = messages.map(new Function<Tuple2<String, String>, String>() {
@Override
public String call(Tuple2<String, String> tuple2) {
return tuple2._2();
}
});

// resolve quadratic equation
JavaDStream result = lines.map(
new Function<String, String>()
{
@Override
public String call(String x) throws Exception {
//System.out.println(“Input is: “+ x);
Integer a,b,c,y, d;
String[] splitResult = null;
Integer x1 = null;
Integer x2 = null;

splitResult = SPACE.split(x);
//System.out.println(“Split: “+ splitResult.length);
if (splitResult.length == 3)
{
a = Integer.valueOf(splitResult[0]);
b = Integer.valueOf(splitResult[1]);
c = Integer.valueOf(splitResult[2]);

y=(b*b)-(4*a*c);
d=(int) Math.sqrt(y);
//System.out.println(“discriminant: “+ d);
if (d > 0)
{
x1=(-b+d)/(2*a);
x2=(-b-d)/(2*a);
}

}

return x + ” “+ x1 + ” “+ x2;
}
}
);

result.foreachRDD(
new Function<JavaRDD, Void>() {
@Override
public Void call(final JavaRDD x) throws Exception {

System.out.println(x.count());
List arr = x.toArray();
for (String entry : arr) {
//System.out.println(entry);
Put p = new Put(Bytes.toBytes(UUID.randomUUID().toString()));
p.add(Bytes.toBytes(“info”), Bytes.toBytes(“record”), Bytes.toBytes(entry));
table.put(p);
}
table.flushCommits();

return null;
}

}
);

//result.print();
jssc.start();
jssc.awaitTermination();
}

}

 

pack it and run it:

[root@dlvm2 ~]java -cp kafkasparkhbase-0.1.jar KafkaSparkHbase

…

14/06/17 12:14:48 INFO JobScheduler: Finished job streaming job 1402996488000 ms.0 from job set of time 1402996488000 ms
14/06/17 12:14:48 INFO JobScheduler: Total delay: 0.052 s for time 1402996488000 ms (execution: 0.047 s)
14/06/17 12:14:48 INFO MappedRDD: Removing RDD 134 from persistence list
14/06/17 12:14:48 INFO BlockManager: Removing RDD 134
14/06/17 12:14:48 INFO MappedRDD: Removing RDD 133 from persistence list
14/06/17 12:14:48 INFO BlockManager: Removing RDD 133
14/06/17 12:14:48 INFO BlockRDD: Removing RDD 132 from persistence list
14/06/17 12:14:48 INFO BlockManager: Removing RDD 132
14/06/17 12:14:48 INFO KafkaInputDStream: Removing blocks of RDD BlockRDD[132] at BlockRDD at ReceiverInputDStream.scala:69 of time 1402996488000 ms
14/06/17 12:14:48 INFO BlockManagerInfo: Added input-0-1402996488400 in memory on dlvm2:33264 (size: 78.0 B, free: 294.9 MB)
14/06/17 12:14:48 INFO BlockManagerInfo: Added input-0-1402996488400 in memory on dlvm1:41044 (size: 78.0 B, free: 294.9 MB)
14/06/17 12:14:50 INFO ReceiverTracker: Stream 0 received 1 blocks
14/06/17 12:14:50 INFO JobScheduler: Starting job streaming job 1402996490000 ms.0 from job set of time 1402996490000 ms
14/06/17 12:14:50 INFO JobScheduler: Added jobs for time 1402996490000 ms
14/06/17 12:14:50 INFO SparkContext: Starting job: take at DStream.scala:593
14/06/17 12:14:50 INFO DAGScheduler: Got job 5 (take at DStream.scala:593) with 1 output partitions (allowLocal=true)
14/06/17 12:14:50 INFO DAGScheduler: Final stage: Stage 6(take at DStream.scala:593)
14/06/17 12:14:50 INFO DAGScheduler: Parents of final stage: List()
14/06/17 12:14:50 INFO DAGScheduler: Missing parents: List()
14/06/17 12:14:50 INFO DAGScheduler: Computing the requested partition locally
14/06/17 12:14:50 INFO BlockManager: Found block input-0-1402996488400 remotely
Input is: 1 4 3
Split: 3
discriminant: 2
x1: -1 x2: -3
14/06/17 12:14:50 INFO SparkContext: Job finished: take at DStream.scala:593, took 0.011823803 s
——————————————-
Time: 1402996490000 ms
——————————————-
1 4 3 -1 -3

 

As we can see. Input data from kafka is 1 4 3 and spark output line is 1 4 3 -1 -3 where -1 -3 are roots.

Screen Shot 2014-06-17 at 12.24.34

 

Screen Shot 2014-06-18 at 13.35.02

Screen Shot 2014-06-17 at 12.57.18

 

We can also see that there no lag in kafka queue. Spark worker is consumed all data from the queue

Screen Shot 2014-06-17 at 12.26.21

Let’s empty our HBase table:

Screen Shot 2014-06-18 at 13.21.09

put some input variables to kafka queue

-2 -3 10
2 -4 -10

And scan HBase table rootvorrand

Screen Shot 2014-06-18 at 13.31.45

As you can see. There are our input variables and roots.

Posted in BigData, Machine Learning

Ilus pilt bigdata vahenditega – Kafka storm hbase hadoop-hdfs zookeeper

Posted on May 26, 2014 by margusja

RUUKKI

Posted in Machine Learning

Spark

Posted on May 21, 2014 - May 21, 2014 by margusja

Spark logo

Spark on hadoop-mapreduc’e kõrval väga võimekas alternatiiv paralleelarvutuste teostamiseks.

Alljärgnevalt mõned sammud, kuidas seadistada spark standalone klasterit.

Mina kasutan hetkel kõige uuemat binary pakki, kus on ka hadoop2 mapreduce tugi. Nimelt on spark’l MapReduce2 tugi olemas, aga hetkel jääme sparki enda standalone lahenduse juurde.

Mul on kasutada kolm füüsilist serverit – vm37, vm38, vm24. vm37 valin ma nn master serveriks, mida kutsutakse spark kontekstis ka driver’ks.

Laen alla hetkel viimase versiooni – http://d3kbcqa49mib13.cloudfront.net/spark-0.9.1-bin-hadoop2.tgz vm37 /opt/ kataloogi ja pakin laht.

Sama kordan ka kõigis slave serverites – laen sama paketi ja pakin lahti samasse kohta – /opt

Master (vm37) peab omama ilma paroolita ssh ligipääsu slave serveritesse. Siinkohal on abiks ssh võtmetega ligipääsud.

cd /opt/spark-0.9.1-bin-hadoop2

Seadistan nn slaved: vim conf/slaves – lisan iga slave eraldi reale.

Käivitan klastri: ./sbin/start-all.sh

Kui nüüd kõik kenasti õnnestus, siis peaks tekkima master serverisse veebiliides vm37:8081

Spark Master GUI

Kasutades spark-shell käsurida, teeme lihtsa arvutussessiooni:

SPARK CLI

GUI kaudu peaks ilmuma samuti sessiooni informatsioon:

Detailsem vaade:

Laadime ühe faili ja loeme kui palju on sõnu selles failis:

CLI count words

On näha, et tööks kasutati kahte serverit vm24 ja vm38. Antud töö kohta on ka GUI kaudu informatsioon olemas:

Result 1

Result2

Antud juhul oli tegu väga triviaalse näitega. Spark omab matemaatiliste ja masin-õppivate arvutuste tuge MLib

Andmete reaalajas arvutamiseks on võimalik kasutada Spark Streaming tuge. Näiteks lugeda mõnest järjekorrasüsteemis nagu Apache-Kafka või Apache-Flume väljund voogusid, neid analüüsida ja tulemused salvestada HDFS andmebaasi HBase.

Posted in Machine Learning

The Open Source Data Platform

Posted on April 29, 2014 by margusja

asparagus_21

Posted in Machine Learning

mahout and recommenditembased

Posted on March 17, 2014 - March 29, 2014 by margusja

Lets imagine we have data about how user rated our products they have bought.

userID – productID – rate.

So with mahout recommenditembased class we can recommend new products to our users. Here is simple command line example how can we do this.

lets create a file where we are going to put our present data about users, products and rates.

vim intro.csv
1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5

Put it into hadoop dfs:
hdfs dfs -moveFromLocal intro.csv input/

We need output directory in hadoop dfs:
[speech@h14 ~]$ hdfs dfs -mkdir output

Now we can run recommend command:
[speech@h14 ~]$ mahout/bin/mahout recommenditembased –input input/intro.csv –output output/recommendation -s SIMILARITY_PEARSON_CORRELATION

Our result will be in hadoop dfs output/recommendation

[speech@h14 ~]$ hdfs dfs -cat output/recommendation/part-r-00000
1 [104:3.9258494]
3 [102:3.2698717]
4 [102:4.7433763]

But if we do not have rates. We have only users and items they have bought. We can still use mahout recommenditembased class.

speech@h14 ~]$ vim boolean.csv
1,101
1,102
1,103
2,101
2,102
2,103
2,104
3,101
3,104
3,105
3,107
4,101
4,103
4,104
4,106
5,101
5,102
5,103
5,104
5,105

[speech@h14 ~]$ hdfs dfs -moveFromLocal boolean.cvs input/
[speech@h14 ~]$ mahout/bin/mahout recommenditembased –input /user/speech/input/boolean.csv –output output/boolean -b -s SIMILARITY_LOGLIKELIHOOD

[speech@h14 ~]$ hdfs dfs -cat /user/speech/output/boolean/part-r-00000
1 [104:1.0,105:1.0]
2 [106:1.0,105:1.0]
3 [103:1.0,102:1.0]
4 [105:1.0,102:1.0]
5 [106:1.0,107:1.0]
[speech@h14 ~]$

Posted in Machine Learning

Hadoop HBase

Posted on March 10, 2014 - May 6, 2014 by margusja

https://hbase.apache.org/

Use Apache HBase when you need random, realtime read/write access to your Big Data. This project’s goal is the hosting of very large tables — billions of rows X millions of columns — atop clusters of commodity hardware. Apache HBase is an open-source, distributed, versioned, non-relational database modeled after Google’s Bigtable: A Distributed Storage System for Structured Data by Chang et al. Just as Bigtable leverages the distributed data storage provided by the Google File System, Apache HBase provides Bigtable-like capabilities on top of Hadoop and HDFS.

Name : hbase
Arch : noarch
Version : 0.96.1.2.0.6.1
Release : 101.el6
Size : 44 M
Repo : HDP-2.0.6
Summary : HBase is the Hadoop database. Use it when you need random, realtime read/write access to your Big Data. This project’s goal is the hosting of very large tables — billions of rows X millions of columns — atop clusters of commodity hardware.
URL : http://hbase.apache.org/
License : APL2
Description : HBase is an open-source, distributed, column-oriented store modeled after Google’ Bigtable: A Distributed Storage System for Structured Data by Chang et al. Just as Bigtable leverages the distributed data storage provided by the Google File System, HBase
: provides Bigtable-like capabilities on top of Hadoop. HBase includes:
:
: * Convenient base classes for backing Hadoop MapReduce jobs with HBase tables
: * Query predicate push down via server side scan and get filters
: * Optimizations for real time queries
: * A high performance Thrift gateway
: * A REST-ful Web service gateway that supports XML, Protobuf, and binary data encoding options
: * Cascading source and sink modules
: * Extensible jruby-based (JIRB) shell
: * Support for exporting metrics via the Hadoop metrics subsystem to files or Ganglia; or via JMX

/etc/hosts
90.190.106.56 vm37.dbweb.ee

[root@vm37 ~]# yum install hbase
…
Resolving Dependencies
–> Running transaction check
—> Package hbase.noarch 0:0.96.1.2.0.6.1-101.el6 will be installed
…
Total download size: 44 M
Installed size: 50 M
Is this ok [y/N]: y
Downloading Packages:
hbase-0.96.1.2.0.6.1-101.el6.noarch.rpm | 44 MB 00:23
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : hbase-0.96.1.2.0.6.1-101.el6.noarch 1/1
Verifying : hbase-0.96.1.2.0.6.1-101.el6.noarch 1/1

Installed:
hbase.noarch 0:0.96.1.2.0.6.1-101.el6

Complete!
[root@vm37 ~]#

important directories:
/etc/hbase/ – conf
/usr/bin/ – binaries
/usr/lib/hbase/ – libaries
/usr/lib/hbase/logs
/usr/lib/hbase/pids
/var/log/hbase
/var/run/hbase

etc/hbase/conf.dist/hbase-site.xml:

hbase.rootdir
hdfs://vm38.dbweb.ee:8020/user/hbase/data hbase.zookeeper.property.dataDir
hdfs://vm38.dbweb.ee:8020/user/hbase/data hbase.zookeeper.property.clientPort
2181 hbase.zookeeper.quorum
localhost hbase.cluster.distributed
true

[hdfs@vm37 ~]$ /usr/lib/hadoop-hdfs/bin/hdfs dfs -mkdir /user/hbase
[hdfs@vm37 ~]$ /usr/lib/hadoop-hdfs/bin/hdfs dfs -mkdir /user/hbase/data
[hdfs@vm37 ~]$ /usr/lib/hadoop-hdfs/bin/hdfs dfs -chown -R hbase /user/hbase

[root@vm37 ~]# su – hbase
[root@vm37 ~]#export JAVA_HOME=/usr
[root@vm37 ~]#export HBASE_LOG_DIR=/var/log/hbase/
[hbase@vm37 ~]$ /usr/lib/hbase/bin/hbase-daemon.sh start master
#[hbase@vm37 ~]$ /usr/lib/hbase/bin/hbase-daemon.sh start zookeeper – we have distributed zookeepers quad now
starting zookeeper, logging to /var/log/hbase//hbase-hbase-zookeeper-vm37.dbweb.ee.out
[hbase@vm37 ~]$HADOOP_CONF_DIR=/etc/hadoop/conf
starting master, logging to /var/log/hbase//hbase-hbase-master-vm37.dbweb.ee.out
[hbase@vm37 ~]$ /usr/lib/hbase/bin/hbase-daemon.sh start regionserver
starting regionserver, logging to /var/log/hbase//hbase-hbase-regionserver-vm37.dbweb.ee.out

….
Problem:
2014-03-10 10:44:23,331 INFO [main] zookeeper.ZooKeeper: Client environment:java.library.path=:/usr/lib/hadoop/lib/native/Linux-amd64-64:/usr/lib/hadoop/lib/native
2014-03-10 10:44:23,331 INFO [main] zookeeper.ZooKeeper: Client environment:java.io.tmpdir=/tmp
2014-03-10 10:44:23,331 INFO [main] zookeeper.ZooKeeper: Client environment:java.compiler=
2014-03-10 10:44:23,331 INFO [main] zookeeper.ZooKeeper: Client environment:os.name=Linux
2014-03-10 10:44:23,331 INFO [main] zookeeper.ZooKeeper: Client environment:os.arch=amd64
2014-03-10 10:44:23,331 INFO [main] zookeeper.ZooKeeper: Client environment:os.version=2.6.32-431.3.1.el6.x86_64
2014-03-10 10:44:23,331 INFO [main] zookeeper.ZooKeeper: Client environment:user.name=hbase
2014-03-10 10:44:23,331 INFO [main] zookeeper.ZooKeeper: Client environment:user.home=/home/hbase
2014-03-10 10:44:23,331 INFO [main] zookeeper.ZooKeeper: Client environment:user.dir=/home/hbase
2014-03-10 10:44:23,333 INFO [main] zookeeper.ZooKeeper: Initiating client connection, connectString=localhost:2181 sessionTimeout=90000 watcher=master:60000, quorum=localhost:2181, baseZNode=/hbase
2014-03-10 10:44:23,360 INFO [main] zookeeper.RecoverableZooKeeper: Process identifier=master:60000 connecting to ZooKeeper ensemble=localhost:2181
2014-03-10 10:44:23,366 INFO [main-SendThread(localhost:2181)] zookeeper.ClientCnxn: Opening socket connection to server localhost/0:0:0:0:0:0:0:1:2181. Will not attempt to authenticate using SASL (unknown error)
2014-03-10 10:44:23,374 WARN [main-SendThread(localhost:2181)] zookeeper.ClientCnxn: Session 0x0 for server null, unexpected error, closing socket connection and attempting reconnect
java.net.ConnectException: Connection refused
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:739)
at org.apache.zookeeper.ClientCnxnSocketNIO.doTransport(ClientCnxnSocketNIO.java:361)
at org.apache.zookeeper.ClientCnxn$SendThread.run(ClientCnxn.java:1072)
2014-03-10 10:44:23,481 INFO [main-SendThread(localhost:2181)] zookeeper.ClientCnxn: Opening socket connection to server localhost/127.0.0.1:2181. Will not attempt to authenticate using SASL (unknown error)
2014-03-10 10:44:23,484 WARN [main-SendThread(localhost:2181)] zookeeper.ClientCnxn: Session 0x0 for server null, unexpected error, closing socket connection and attempting reconnect
java.net.ConnectException: Connection refused
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:739)
at org.apache.zookeeper.ClientCnxnSocketNIO.doTransport(ClientCnxnSocketNIO.java:361)
at org.apache.zookeeper.ClientCnxn$SendThread.run(ClientCnxn.java:1072)
2014-03-10 10:44:23,491 WARN [main] zookeeper.RecoverableZooKeeper: Possibly transient ZooKeeper, quorum=localhost:2181, exception=org.apache.zookeeper.KeeperException$ConnectionLossException: KeeperErrorCode = ConnectionLoss for /hbase
2014-03-10 10:44:23,491 INFO [main] util.RetryCounter: Sleeping 1000ms before retry #0…
2014-03-10 10:44:24,585 INFO [main-SendThread(localhost:2181)] zookeeper.ClientCnxn: Opening socket connection to server localhost/0:0:0:0:0:0:0:1:2181. Will not attempt to authenticate using SASL (unknown error)
2014-03-10 10:44:24,585 WARN [main-SendThread(localhost:2181)] zookeeper.ClientCnxn: Session 0x0 for server null, unexpected error, closing socket connection and attempting reconnect
java.net.ConnectException: Connection refused
Solution:
Zookeeper have to configured and running before master
….

[hbase@vm37 ~]$ /usr/lib/hbase/bin/hbase shell
2014-03-10 10:24:32,720 INFO [main] Configuration.deprecation: hadoop.native.lib is deprecated. Instead, use io.native.lib.available
HBase Shell; enter ‘help’ for list of supported commands.
Type “exit” to leave the HBase Shell
Version 0.96.1.2.0.6.1-101-hadoop2, rcf3f71e5014c66e85c10a244fa9a1e3c43cef077, Wed Jan 8 21:59:02 PST 2014
hbase(main):001:0>
hbase(main):001:0> create ‘test’, ‘cf’
0 row(s) in 11.6950 seconds
=> Hbase::Table – test
hbase(main):002:0> list ‘test’
TABLE
test
1 row(s) in 3.9510 seconds
=> [“test”]
hbase(main):003:0> put ‘test’, ‘row1’, ‘cf:a’, ‘value1’
0 row(s) in 0.1420 seconds
hbase(main):004:0> put ‘test’, ‘row2’, ‘cf:b’, ‘value2’
0 row(s) in 0.0170 seconds
hbase(main):006:0> put ‘test’, ‘row3’, ‘cf:c’, ‘value3’
0 row(s) in 0.0090 seconds
hbase(main):007:0> scan ‘test’
ROW COLUMN+CELL
row1 column=cf:a, timestamp=1394440138295, value=value1
row2 column=cf:b, timestamp=1394440145368, value=value2
row3 column=cf:c, timestamp=1394440161856, value=value3
3 row(s) in 0.0660 seconds
hbase(main):008:0> get ‘test’, ‘row1’
COLUMN CELL
cf:a timestamp=1394440138295, value=value1
1 row(s) in 0.0390 seconds
hbase(main):009:0> disable ‘test’
0 row(s) in 2.6660 seconds
hbase(main):010:0> drop ‘test’
0 row(s) in 0.5050 seconds
hbase(main):011:0> exit
[hbase@vm37 ~]$

…
Problem:
2014-03-10 11:16:33,892 WARN [RpcServer.handler=16,port=60000] master.HMaster: Table Namespace Manager not ready yet
hbase(main):001:0> create ‘test’, ‘cf’

ERROR: java.io.IOException: Table Namespace Manager not ready yet, try again later
at org.apache.hadoop.hbase.master.HMaster.getNamespaceDescriptor(HMaster.java:3092)
at org.apache.hadoop.hbase.master.HMaster.createTable(HMaster.java:1729)
at org.apache.hadoop.hbase.master.HMaster.createTable(HMaster.java:1768)
at org.apache.hadoop.hbase.protobuf.generated.MasterProtos$MasterService$2.callBlockingMethod(MasterProtos.java:38221)
at org.apache.hadoop.hbase.ipc.RpcServer.call(RpcServer.java:2175)
at org.apache.hadoop.hbase.ipc.RpcServer$Handler.run(RpcServer.java:1879)
Solution: At least one regionalserver have to by configured and running
…

hbase(main):007:0> status
1 servers, 0 dead, 3.0000 average load

http://vm37:16010/master-status

Map/Reduced Export
[hbase@vm37 ~]$ hbase org.apache.hadoop.hbase.mapreduce.Export test test_out2 and result will be in hdfs://server/user/hbase/test_out2/

hbase(main):001:0> create ‘test2’, ‘cf’
hbase(main):002:0> scan ‘test2’
ROW COLUMN+CELL
0 row(s) in 0.0440 seconds

Map/Reduced Import
[hbase@vm37 ~]$ /usr/lib/hbase/bin/hbase org.apache.hadoop.hbase.mapreduce.Import test2 hdfs://vm38.dbweb.ee:8020/user/hbase/test_out2

hbase(main):004:0> scan ‘test2’
ROW COLUMN+CELL
row1 column=cf:a, timestamp=1394445121367, value=value1
row2 column=cf:b, timestamp=1394445137811, value=value2
row3 column=cf:c, timestamp=1394445149457, value=value3
3 row(s) in 0.0230 seconds

hbase(main):005:0>

 

Add a new regionserver:

Just add new record in master

[root@vm37 kafka_2.9.1-0.8.1.1]# vim /etc/hbase/conf/regionservers

In hbase-site.xml (master and regionserver(s) ) set at least one common zookeepr server in hbase.zookeeper.quorum.

In slave start regionserver:

/usr/lib/hbase/bin/hbase-daemon.sh –config /etc/hbase/conf start regionserver

Check http://master:16010/master-status are regionservers available

Posted in Linux, Machine Learning

Apache Hive-0.12 and Hadoop-2.2.0

Posted on March 7, 2014 - March 11, 2014 by margusja

http://hive.apache.org/

The Apache Hive ™ data warehouse software facilitates querying and managing large datasets residing in distributed storage. Hive provides a mechanism to project structure onto this data and query the data using a SQL-like language called HiveQL. At the same time this language also allows traditional map/reduce programmers to plug in their custom mappers and reducers when it is inconvenient or inefficient to express this logic in HiveQL.

[root@vm24 ~]# yum install hive

Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
* base: ftp.hosteurope.de
* epel: ftp.lysator.liu.se
* extras: ftp.hosteurope.de
* rpmforge: mirror.bacloud.com
* updates: ftp.hosteurope.de
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package hive.noarch 0:0.12.0.2.0.6.1-101.el6 will be installed
--> Finished Dependency Resolution

Dependencies Resolved

================================================================================================================================================================================================================================================================================
Package Arch Version Repository Size
================================================================================================================================================================================================================================================================================
Installing:
hive noarch 0.12.0.2.0.6.1-101.el6 HDP-2.0.6 44 M

Transaction Summary
================================================================================================================================================================================================================================================================================
Install 1 Package(s)

Total download size: 44 M
Installed size: 207 M
Is this ok [y/N]: y
Downloading Packages:
hive-0.12.0.2.0.6.1-101.el6.noarch.rpm | 44 MB 00:19
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : hive-0.12.0.2.0.6.1-101.el6.noarch 1/1
Verifying : hive-0.12.0.2.0.6.1-101.el6.noarch 1/1

Installed:
hive.noarch 0:0.12.0.2.0.6.1-101.el6

Complete!

[root@vm24 ~]#

Olulisemad kataloogid, mis tekkisid (rpm -ql hive)
/usr/lib/hive/ – see peaks olema hive home
/var/lib/hive
/var/lib/hive/metastore
/var/log/hive
/var/run/hive

[root@vm24 ~]# su – hive
[hive@vm24 ~]$ export HIVE_HOME=/usr/lib/hive
[hive@vm24 ~]$ export HADOOP_HOME=/usr/lib/hadoop

[hdfs@vm24 ~]$ /usr/lib/hadoop-hdfs/bin/hdfs dfs -mkdir /user/hive
[hdfs@vm24 ~]$ /usr/lib/hadoop-hdfs/bin/hdfs dfs -mkdir /user/hive/warehouse
[hdfs@vm24 ~]$ /usr/lib/hadoop-hdfs/bin/hdfs dfs -chmod g+w /tmp
[hdfs@vm24 ~]$ /usr/lib/hadoop-hdfs/bin/hdfs dfs -chmod g+w /user/hive/warehouse

[hdfs@vm24 ~]$ /usr/lib/hadoop-hdfs/bin/hdfs dfs -chown -R hive /user/hive/
[hdfs@vm24 ~]$
[hive@vm24 ~]$ /usr/lib/hive/bin/hive

Cannot find hadoop installation: $HADOOP_HOME or $HADOOP_PREFIX must be set or hadoop must be in the path

[hive@vm24 ~]$

Ilmselt olen segamine ajanud hadoop ja hadoop-hdfs
[hive@vm24 ~]$ export HADOOP_HOME=/usr/lib/hadoop
[hive@vm24 ~]$ /usr/lib/hive/bin/hive


Error: JAVA_HOME is not set and could not be found.
Unable to determine Hadoop version information.
'hadoop version' returned:
Error: JAVA_HOME is not set and could not be found.

[hive@vm24 ~]$
[hive@vm24 ~]$ export JAVA_HOME=/usr
[hive@vm24 ~]$ /usr/lib/hive/bin/hive

14/03/07 11:49:15 INFO Configuration.deprecation: mapred.input.dir.recursive is deprecated. Instead, use mapreduce.input.fileinputformat.input.dir.recursive
14/03/07 11:49:15 INFO Configuration.deprecation: mapred.max.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.maxsize
14/03/07 11:49:15 INFO Configuration.deprecation: mapred.min.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize
14/03/07 11:49:15 INFO Configuration.deprecation: mapred.min.split.size.per.rack is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.rack
14/03/07 11:49:15 INFO Configuration.deprecation: mapred.min.split.size.per.node is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.node
14/03/07 11:49:15 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
14/03/07 11:49:15 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative

Logging initialized using configuration in jar:file:/usr/lib/hive/lib/hive-common-0.12.0.2.0.6.1-101.jar!/hive-log4j.properties
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/lib/hadoop/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/lib/hive/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
hive>

Session on hive:
[hive@vm24 ~]$ wget https://hadoop-clusternet.googlecode.com/svn-history/r20/trunk/clusternet/thirdparty/data/ml-data.tar__0.gz
–2014-03-07 11:53:56– https://hadoop-clusternet.googlecode.com/svn-history/r20/trunk/clusternet/thirdparty/data/ml-data.tar__0.gz
Resolving hadoop-clusternet.googlecode.com… 2a00:1450:4001:c02::52, 173.194.70.82
Connecting to hadoop-clusternet.googlecode.com|2a00:1450:4001:c02::52|:443… connected.
HTTP request sent, awaiting response… 200 OK
Length: 4948405 (4.7M) [application/octet-stream]
Saving to: “ml-data.tar__0.gz”

100%[======================================================================================================================================================================================================================================>] 4,948,405 609K/s in 7.1s

2014-03-07 11:54:03 (681 KB/s) – “ml-data.tar__0.gz” saved [4948405/4948405]

[hive@vm24 ~]$
[hive@vm24 ~]$ tar zxvf ml-data.tar__0.gz
ml-data/
ml-data/README
ml-data/allbut.pl
ml-data/mku.sh
ml-data/u.data
ml-data/u.genre
ml-data/u.info
ml-data/u.item
ml-data/u.occupation
ml-data/u.user
ml-data/ub.test
ml-data/u1.test
ml-data/u1.base
ml-data/u2.test
ml-data/u2.base
ml-data/u3.test
ml-data/u3.base
ml-data/u4.test
ml-data/u4.base
ml-data/u5.test
ml-data/u5.base
ml-data/ua.test
ml-data/ua.base
ml-data/ub.base
[hive@vm24 ~]$
hive> CREATE TABLE u_data (
> userid INT,
> movieid INT,
> rating INT,
> unixtime STRING)
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY ‘\t’
> STORED AS TEXTFILE;

hive> LOAD DATA LOCAL INPATH ‘ml-data/u.data’
> OVERWRITE INTO TABLE u_data;


Copying data from file:/home/hive/ml-data/u.data
Copying file: file:/home/hive/ml-data/u.data
Loading data to table default.u_data
Table default.u_data stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 1979173, raw_data_size: 0]
OK
Time taken: 3.0 seconds

hive>
hive> SELECT COUNT(*) FROM u_data;

Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=
In order to set a constant number of reducers:
set mapred.reduce.tasks=
Starting Job = job_1394027471317_0016, Tracking URL = http://vm38:8088/proxy/application_1394027471317_0016/
Kill Command = /usr/lib/hadoop/bin/hadoop job -kill job_1394027471317_0016
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2014-03-07 11:59:47,212 Stage-1 map = 0%, reduce = 0%
2014-03-07 11:59:57,933 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.14 sec
2014-03-07 11:59:58,998 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.14 sec
2014-03-07 12:00:00,094 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.14 sec
2014-03-07 12:00:01,157 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.14 sec
2014-03-07 12:00:02,212 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.14 sec
2014-03-07 12:00:03,268 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.14 sec
2014-03-07 12:00:04,323 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.14 sec
2014-03-07 12:00:05,378 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.14 sec
2014-03-07 12:00:06,434 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.14 sec
2014-03-07 12:00:07,489 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.14 sec
2014-03-07 12:00:08,573 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.14 sec
2014-03-07 12:00:09,630 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.14 sec
2014-03-07 12:00:10,697 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 5.14 sec
2014-03-07 12:00:11,745 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 5.14 sec
MapReduce Total cumulative CPU time: 5 seconds 140 msec
Ended Job = job_1394027471317_0016
MapReduce Jobs Launched:
Job 0: Map: 1 Reduce: 1 Cumulative CPU: 5.14 sec HDFS Read: 1979386 HDFS Write: 7 SUCCESS
Total MapReduce CPU Time Spent: 5 seconds 140 msec
OK
100000
Time taken: 67.285 seconds, Fetched: 1 row(s)

hive>

Siin on ka näha, et hadoop arvutusosa tegeleb antud tööga(1394027471317_0016):
Screen Shot 2014-03-07 at 12.01.52

Screen Shot 2014-03-07 at 12.00.13

[hive@vm24 ~]$ hive –service hiveserver
Starting Hive Thrift Server
14/03/11 15:21:05 INFO Configuration.deprecation: mapred.input.dir.recursive is deprecated. Instead, use mapreduce.input.fileinputformat.input.dir.recursive
14/03/11 15:21:05 INFO Configuration.deprecation: mapred.max.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.maxsize
14/03/11 15:21:05 INFO Configuration.deprecation: mapred.min.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize
14/03/11 15:21:05 INFO Configuration.deprecation: mapred.min.split.size.per.rack is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.rack
14/03/11 15:21:05 INFO Configuration.deprecation: mapred.min.split.size.per.node is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.node
14/03/11 15:21:05 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
14/03/11 15:21:05 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/lib/hadoop/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/lib/hive/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
…
Start Web UI

/etc/hive/conf/hive-site.xml hive.hwi.war.file
lib/hive-hwi-0.12.0.2.0.6.1-101.war

[hive@vm24 ~]$ hive –service hwi
14/03/11 15:14:57 INFO hwi.HWIServer: HWI is starting up
14/03/11 15:14:58 INFO Configuration.deprecation: mapred.input.dir.recursive is deprecated. Instead, use mapreduce.input.fileinputformat.input.dir.recursive
14/03/11 15:14:58 INFO Configuration.deprecation: mapred.max.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.maxsize
14/03/11 15:14:58 INFO Configuration.deprecation: mapred.min.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize
14/03/11 15:14:58 INFO Configuration.deprecation: mapred.min.split.size.per.rack is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.rack
14/03/11 15:14:58 INFO Configuration.deprecation: mapred.min.split.size.per.node is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.node
14/03/11 15:14:58 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
14/03/11 15:14:58 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/lib/hadoop/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/lib/hive/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
14/03/11 15:14:59 INFO mortbay.log: Logging to org.slf4j.impl.Log4jLoggerAdapter(org.mortbay.log) via org.mortbay.log.Slf4jLog
14/03/11 15:14:59 INFO mortbay.log: jetty-6.1.26
14/03/11 15:14:59 INFO mortbay.log: Extract /usr/lib/hive/lib/hive-hwi-0.12.0.2.0.6.1-101.war to /tmp/Jetty_0_0_0_0_9999_hive.hwi.0.12.0.2.0.6.1.101.war__hwi__4ykn6s/webapp
14/03/11 15:15:00 INFO mortbay.log: Started SocketConnector@0.0.0.0:9999

http://vm24:9999/hwi/
[hive@vm24 ~]$ hive –service metastore -p 10000
Starting Hive Metastore Server
14/03/11 16:00:26 INFO Configuration.deprecation: mapred.input.dir.recursive is deprecated. Instead, use mapreduce.input.fileinputformat.input.dir.recursive
14/03/11 16:00:26 INFO Configuration.deprecation: mapred.max.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.maxsize
14/03/11 16:00:26 INFO Configuration.deprecation: mapred.min.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize
14/03/11 16:00:26 INFO Configuration.deprecation: mapred.min.split.size.per.rack is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.rack
14/03/11 16:00:26 INFO Configuration.deprecation: mapred.min.split.size.per.node is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize.per.node
14/03/11 16:00:26 INFO Configuration.deprecation: mapred.reduce.tasks is deprecated. Instead, use mapreduce.job.reduces
14/03/11 16:00:26 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/lib/hadoop/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/lib/hive/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]

…
Eelnevalt teised hive teenused sulgeda, kuna praeguse seadistusega lukustatakse Derby andmebaas

Metastore

Posted in Linux, Machine Learning

Pig install, configure to use remote hadoop-yarn resourcemanager and a simple session

Posted on March 6, 2014 - March 6, 2014 by margusja

https://pig.apache.org/ pig.noarch : Pig is a platform for analyzing large data sets

[root@vm24 ~]# yum install pig

Loading mirror speeds from cached hostfile
* base: mirrors.coreix.net
* epel: ftp.lysator.liu.se
* extras: mirrors.coreix.net
* rpmforge: mirror.bacloud.com
* updates: mirrors.coreix.net
Setting up Install Process
Resolving Dependencies
–> Running transaction check
—> Package pig.noarch 0:0.12.0.2.0.6.1-101.el6 will be installed
–> Processing Dependency: hadoop-client for package: pig-0.12.0.2.0.6.1-101.el6.noarch
–> Running transaction check
—> Package hadoop-client.x86_64 0:2.2.0.2.0.6.0-101.el6 will be installed
–> Processing Dependency: hadoop-yarn = 2.2.0.2.0.6.0-101.el6 for package: hadoop-client-2.2.0.2.0.6.0-101.el6.x86_64
–> Processing Dependency: hadoop-mapreduce = 2.2.0.2.0.6.0-101.el6 for package: hadoop-client-2.2.0.2.0.6.0-101.el6.x86_64
–> Processing Dependency: hadoop-hdfs = 2.2.0.2.0.6.0-101.el6 for package: hadoop-client-2.2.0.2.0.6.0-101.el6.x86_64
–> Processing Dependency: hadoop = 2.2.0.2.0.6.0-101.el6 for package: hadoop-client-2.2.0.2.0.6.0-101.el6.x86_64
–> Running transaction check
—> Package hadoop.x86_64 0:2.2.0.2.0.6.0-101.el6 will be installed
—> Package hadoop-hdfs.x86_64 0:2.2.0.2.0.6.0-101.el6 will be installed
—> Package hadoop-mapreduce.x86_64 0:2.2.0.2.0.6.0-101.el6 will be installed
—> Package hadoop-yarn.x86_64 0:2.2.0.2.0.6.0-101.el6 will be installed
–> Finished Dependency Resolution

Dependencies Resolved

================================================================================================================================================================================================================================================================================
Package Arch Version Repository Size
================================================================================================================================================================================================================================================================================
Installing:
pig noarch 0.12.0.2.0.6.1-101.el6 HDP-2.0.6 64 M
Installing for dependencies:
hadoop x86_64 2.2.0.2.0.6.0-101.el6 HDP-2.0.6 18 M
hadoop-client x86_64 2.2.0.2.0.6.0-101.el6 HDP-2.0.6 9.2 k
hadoop-hdfs x86_64 2.2.0.2.0.6.0-101.el6 HDP-2.0.6 13 M
hadoop-mapreduce x86_64 2.2.0.2.0.6.0-101.el6 HDP-2.0.6 11 M
hadoop-yarn x86_64 2.2.0.2.0.6.0-101.el6 HDP-2.0.6 9.5 M

Transaction Summary
================================================================================================================================================================================================================================================================================
Install 6 Package(s)

Total download size: 115 M
Installed size: 191 M
Is this ok [y/N]: y
Downloading Packages:
(1/6): hadoop-2.2.0.2.0.6.0-101.el6.x86_64.rpm | 18 MB 00:11
(2/6): hadoop-client-2.2.0.2.0.6.0-101.el6.x86_64.rpm | 9.2 kB 00:00
(3/6): hadoop-hdfs-2.2.0.2.0.6.0-101.el6.x86_64.rpm | 13 MB 00:05
(4/6): hadoop-mapreduce-2.2.0.2.0.6.0-101.el6.x86_64.rpm | 11 MB 00:06
(5/6): hadoop-yarn-2.2.0.2.0.6.0-101.el6.x86_64.rpm | 9.5 MB 00:05
(6/6): pig-0.12.0.2.0.6.1-101.el6.noarch.rpm | 64 MB 00:26
——————————————————————————————————————————————————————————————————————————————————————————–
Total 2.0 MB/s | 115 MB 00:56
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : hadoop-2.2.0.2.0.6.0-101.el6.x86_64 1/6
Installing : hadoop-yarn-2.2.0.2.0.6.0-101.el6.x86_64 2/6
warning: group yarn does not exist – using root
Installing : hadoop-mapreduce-2.2.0.2.0.6.0-101.el6.x86_64 3/6
Installing : hadoop-hdfs-2.2.0.2.0.6.0-101.el6.x86_64 4/6
Installing : hadoop-client-2.2.0.2.0.6.0-101.el6.x86_64 5/6
Installing : pig-0.12.0.2.0.6.1-101.el6.noarch 6/6
Verifying : hadoop-yarn-2.2.0.2.0.6.0-101.el6.x86_64 1/6
Verifying : hadoop-client-2.2.0.2.0.6.0-101.el6.x86_64 2/6
Verifying : hadoop-2.2.0.2.0.6.0-101.el6.x86_64 3/6
Verifying : hadoop-hdfs-2.2.0.2.0.6.0-101.el6.x86_64 4/6
Verifying : pig-0.12.0.2.0.6.1-101.el6.noarch 5/6
Verifying : hadoop-mapreduce-2.2.0.2.0.6.0-101.el6.x86_64 6/6

Installed:
pig.noarch 0:0.12.0.2.0.6.1-101.el6

Dependency Installed:
hadoop.x86_64 0:2.2.0.2.0.6.0-101.el6 hadoop-client.x86_64 0:2.2.0.2.0.6.0-101.el6 hadoop-hdfs.x86_64 0:2.2.0.2.0.6.0-101.el6 hadoop-mapreduce.x86_64 0:2.2.0.2.0.6.0-101.el6 hadoop-yarn.x86_64 0:2.2.0.2.0.6.0-101.el6

Complete!
[root@vm24 ~]#

[root@vm24 ~]# su – margusja
[margusja@vm24 ~]$ pig
which: no hbase in (:/usr/local/apache-maven-3.1.1/bin:/usr/lib64/qt-3.3/bin:/usr/local/maven/bin:/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/margusja/bin)
2014-03-06 10:17:18,392 [main] INFO org.apache.pig.Main – Apache Pig version 0.12.0.2.0.6.1-101 (rexported) compiled Jan 08 2014, 22:49:47
2014-03-06 10:17:18,393 [main] INFO org.apache.pig.Main – Logging error messages to: /home/margusja/pig_1394093838389.log
2014-03-06 10:17:18,690 [main] INFO org.apache.pig.impl.util.Utils – Default bootup file /home/margusja/.pigbootup not found
2014-03-06 10:17:19,680 [main] INFO org.apache.hadoop.conf.Configuration.deprecation – mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
2014-03-06 10:17:19,680 [main] INFO org.apache.hadoop.conf.Configuration.deprecation – fs.default.name is deprecated. Instead, use fs.defaultFS
2014-03-06 10:17:19,680 [main] INFO org.apache.pig.backend.hadoop.executionengine.HExecutionEngine – Connecting to hadoop file system at: file:///
2014-03-06 10:17:19,692 [main] INFO org.apache.hadoop.conf.Configuration.deprecation – mapred.used.genericoptionsparser is deprecated. Instead, use mapreduce.client.genericoptionsparser.used
2014-03-06 10:17:22,675 [main] INFO org.apache.hadoop.conf.Configuration.deprecation – fs.default.name is deprecated. Instead, use fs.defaultFS
grunt>

—
Siinkohal tehes päringut ebaõnnestume, sest pig ei tea olulisi parameetreid hadoop ja yarn keskkondade kohta.
Üks võimalus, mida mina kasutan – määrata PIG_CLASSPATH=/etc/hadoop/conf, kus omakorda
yarn-site.xml:

yarn.application.classpath
/etc/hadoop/conf,/usr/lib/hadoop/*,/usr/lib/hadoop/lib/*,/usr/lib/hadoop-hdfs/*,/usr/lib/hadoop-hdfs/lib/*,/usr/lib/hadoop-yarn/*,/usr/lib/hadoop-yarn/lib/*,/usr/lib/hadoop-mapreduce/*,/usr/lib/hadoop-mapreduce/lib/*
yarn.resourcemanager.address
vm38:8032
yarn.log-aggregation-enable
true
yarn.resourcemanager.scheduler.address
vm38:8030
yarn.nodemanager.aux-services
mapreduce_shuffle
yarn.nodemanager.aux-services.mapreduce_shuffle.class
org.apache.hadoop.mapred.ShuffleHandler

mapred-site.xml:

mapreduce.framework.name
yarn
yarn.app.mapreduce.am.staging-dir
/user

core-site.xml:

fs.defaultFS
hdfs://vm38:8020

Nüüd on pig kliendil piisavalt informatsiooni, et saata map-reduce tööd hadoop-yarn ressursijaotajale, kes omakorda jagab töö temale kättesaadavate ressursside (nodemanageride) vahel.

Näide pig sessioonist:
[margusja@vm24 ~]$ env
SHELL=/bin/bash
TERM=xterm-256color
HADOOP_HOME=/usr/lib/hadoop
HISTSIZE=1000
QTDIR=/usr/lib64/qt-3.3
QTINC=/usr/lib64/qt-3.3/include
USER=margusja
LS_COLORS=rs=0:di=38;5;27:ln=38;5;51:mh=44;38;5;15:pi=40;38;5;11:so=38;5;13:do=38;5;5:bd=48;5;232;38;5;11:cd=48;5;232;38;5;3:or=48;5;232;38;5;9:mi=05;48;5;232;38;5;15:su=48;5;196;38;5;15:sg=48;5;11;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5;16:ow=48;5;10;38;5;21:st=48;5;21;38;5;15:ex=38;5;34:*.tar=38;5;9:*.tgz=38;5;9:*.arj=38;5;9:*.taz=38;5;9:*.lzh=38;5;9:*.lzma=38;5;9:*.tlz=38;5;9:*.txz=38;5;9:*.zip=38;5;9:*.z=38;5;9:*.Z=38;5;9:*.dz=38;5;9:*.gz=38;5;9:*.lz=38;5;9:*.xz=38;5;9:*.bz2=38;5;9:*.tbz=38;5;9:*.tbz2=38;5;9:*.bz=38;5;9:*.tz=38;5;9:*.deb=38;5;9:*.rpm=38;5;9:*.jar=38;5;9:*.rar=38;5;9:*.ace=38;5;9:*.zoo=38;5;9:*.cpio=38;5;9:*.7z=38;5;9:*.rz=38;5;9:*.jpg=38;5;13:*.jpeg=38;5;13:*.gif=38;5;13:*.bmp=38;5;13:*.pbm=38;5;13:*.pgm=38;5;13:*.ppm=38;5;13:*.tga=38;5;13:*.xbm=38;5;13:*.xpm=38;5;13:*.tif=38;5;13:*.tiff=38;5;13:*.png=38;5;13:*.svg=38;5;13:*.svgz=38;5;13:*.mng=38;5;13:*.pcx=38;5;13:*.mov=38;5;13:*.mpg=38;5;13:*.mpeg=38;5;13:*.m2v=38;5;13:*.mkv=38;5;13:*.ogm=38;5;13:*.mp4=38;5;13:*.m4v=38;5;13:*.mp4v=38;5;13:*.vob=38;5;13:*.qt=38;5;13:*.nuv=38;5;13:*.wmv=38;5;13:*.asf=38;5;13:*.rm=38;5;13:*.rmvb=38;5;13:*.flc=38;5;13:*.avi=38;5;13:*.fli=38;5;13:*.flv=38;5;13:*.gl=38;5;13:*.dl=38;5;13:*.xcf=38;5;13:*.xwd=38;5;13:*.yuv=38;5;13:*.cgm=38;5;13:*.emf=38;5;13:*.axv=38;5;13:*.anx=38;5;13:*.ogv=38;5;13:*.ogx=38;5;13:*.aac=38;5;45:*.au=38;5;45:*.flac=38;5;45:*.mid=38;5;45:*.midi=38;5;45:*.mka=38;5;45:*.mp3=38;5;45:*.mpc=38;5;45:*.ogg=38;5;45:*.ra=38;5;45:*.wav=38;5;45:*.axa=38;5;45:*.oga=38;5;45:*.spx=38;5;45:*.xspf=38;5;45:
MAIL=/var/spool/mail/margusja
PATH=/usr/local/apache-maven-3.1.1/bin:/usr/lib64/qt-3.3/bin:/usr/local/maven/bin:/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/margusja/bin
PWD=/home/margusja
JAVA_HOME=/usr/lib/jvm/jre-1.7.0
EDITOR=/usr/bin/vim
PIG_CLASSPATH=/etc/hadoop/conf
LANG=en_US.UTF-8
HISTCONTROL=ignoredups
M2_HOME=/usr/local/apache-maven-3.1.1
SHLVL=1
HOME=/home/margusja
LOGNAME=margusja
QTLIB=/usr/lib64/qt-3.3/lib
CVS_RSH=ssh
LESSOPEN=|/usr/bin/lesspipe.sh %s
G_BROKEN_FILENAMES=1
_=/bin/env
[margusja@vm24 ~]$
[margusja@vm24 ~]$ pig
which: no hbase in (:/usr/local/apache-maven-3.1.1/bin:/usr/lib64/qt-3.3/bin:/usr/local/maven/bin:/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/margusja/bin)
2014-03-06 11:55:56,557 [main] INFO org.apache.pig.Main – Apache Pig version 0.12.0.2.0.6.1-101 (rexported) compiled Jan 08 2014, 22:49:47
2014-03-06 11:55:56,558 [main] INFO org.apache.pig.Main – Logging error messages to: /home/margusja/pig_1394099756554.log
2014-03-06 11:55:56,605 [main] INFO org.apache.pig.impl.util.Utils – Default bootup file /home/margusja/.pigbootup not found
2014-03-06 11:55:57,292 [main] INFO org.apache.hadoop.conf.Configuration.deprecation – mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
2014-03-06 11:55:57,292 [main] INFO org.apache.hadoop.conf.Configuration.deprecation – fs.default.name is deprecated. Instead, use fs.defaultFS
2014-03-06 11:55:57,292 [main] INFO org.apache.pig.backend.hadoop.executionengine.HExecutionEngine – Connecting to hadoop file system at: hdfs://vm38:8020
2014-03-06 11:55:57,304 [main] INFO org.apache.hadoop.conf.Configuration.deprecation – mapred.used.genericoptionsparser is deprecated. Instead, use mapreduce.client.genericoptionsparser.used
2014-03-06 11:56:02,676 [main] INFO org.apache.hadoop.conf.Configuration.deprecation – fs.default.name is deprecated. Instead, use fs.defaultFS
grunt>
grunt> A = load ‘passwd’ using PigStorage(‘:’); (passwd fail peab olema eelnevalt vastava kasutaja dfs kodukatakoogis – /usr/lib/hadoop-hdfs/bin/hdfs dfs -put /etc/passwd /user/margusja)
grunt> B = foreach A generate $0 as id; (passwd failis omistame esimesel real oleva id muutujasse)
grunt> dump B;
2014-03-06 12:28:36,225 [main] INFO org.apache.pig.tools.pigstats.ScriptState – Pig features used in the script: UNKNOWN
2014-03-06 12:28:36,287 [main] INFO org.apache.pig.newplan.logical.optimizer.LogicalPlanOptimizer – {RULES_ENABLED=[AddForEach, ColumnMapKeyPrune, DuplicateForEachColumnRewrite, GroupByConstParallelSetter, ImplicitSplitInserter, LimitOptimizer, LoadTypeCastInserter, MergeFilter, MergeForEach, NewPartitionFilterOptimizer, PartitionFilterOptimizer, PushDownForEachFlatten, PushUpFilter, SplitFilter, StreamTypeCastInserter], RULES_DISABLED=[FilterLogicExpressionSimplifier]}
2014-03-06 12:28:36,459 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MRCompiler – File concatenation threshold: 100 optimistic? false
2014-03-06 12:28:36,499 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MultiQueryOptimizer – MR plan size before optimization: 1
2014-03-06 12:28:36,499 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MultiQueryOptimizer – MR plan size after optimization: 1
2014-03-06 12:28:36,926 [main] INFO org.apache.hadoop.yarn.client.RMProxy – Connecting to ResourceManager at vm38/90.190.106.33:8032
2014-03-06 12:28:37,167 [main] INFO org.apache.pig.tools.pigstats.ScriptState – Pig script settings are added to the job
2014-03-06 12:28:37,194 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.JobControlCompiler – mapred.job.reduce.markreset.buffer.percent is not set, set to default 0.3
2014-03-06 12:28:37,204 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.JobControlCompiler – creating jar file Job5693330381910866671.jar
2014-03-06 12:28:45,595 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.JobControlCompiler – jar file Job5693330381910866671.jar created
2014-03-06 12:28:45,595 [main] INFO org.apache.hadoop.conf.Configuration.deprecation – mapred.jar is deprecated. Instead, use mapreduce.job.jar
2014-03-06 12:28:45,635 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.JobControlCompiler – Setting up single store job
2014-03-06 12:28:45,658 [main] INFO org.apache.pig.data.SchemaTupleFrontend – Key [pig.schematuple] is false, will not generate code.
2014-03-06 12:28:45,658 [main] INFO org.apache.pig.data.SchemaTupleFrontend – Starting process to move generated code to distributed cache
2014-03-06 12:28:45,661 [main] INFO org.apache.pig.data.SchemaTupleFrontend – Setting key [pig.schematuple.classes] with classes to deserialize []
2014-03-06 12:28:45,737 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher – 1 map-reduce job(s) waiting for submission.
2014-03-06 12:28:45,765 [JobControl] INFO org.apache.hadoop.yarn.client.RMProxy – Connecting to ResourceManager at vm38/x.x.x.x:8032
2014-03-06 12:28:45,873 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation – fs.default.name is deprecated. Instead, use fs.defaultFS
2014-03-06 12:28:45,875 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation – mapreduce.job.counters.limit is deprecated. Instead, use mapreduce.job.counters.max
2014-03-06 12:28:45,875 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation – mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
2014-03-06 12:28:45,875 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation – mapred.job.name is deprecated. Instead, use mapreduce.job.name
2014-03-06 12:28:45,875 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation – mapreduce.inputformat.class is deprecated. Instead, use mapreduce.job.inputformat.class
2014-03-06 12:28:45,876 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation – mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
2014-03-06 12:28:45,876 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation – mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
2014-03-06 12:28:45,876 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation – mapreduce.outputformat.class is deprecated. Instead, use mapreduce.job.outputformat.class
2014-03-06 12:28:45,876 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation – io.bytes.per.checksum is deprecated. Instead, use dfs.bytes-per-checksum
2014-03-06 12:28:46,822 [JobControl] INFO org.apache.hadoop.mapreduce.lib.input.FileInputFormat – Total input paths to process : 1
2014-03-06 12:28:46,822 [JobControl] INFO org.apache.pig.backend.hadoop.executionengine.util.MapRedUtil – Total input paths to process : 1
2014-03-06 12:28:46,858 [JobControl] INFO org.apache.pig.backend.hadoop.executionengine.util.MapRedUtil – Total input paths (combined) to process : 1
2014-03-06 12:28:46,992 [JobControl] INFO org.apache.hadoop.mapreduce.JobSubmitter – number of splits:1
2014-03-06 12:28:47,008 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation – user.name is deprecated. Instead, use mapreduce.job.user.name
2014-03-06 12:28:47,009 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation – fs.default.name is deprecated. Instead, use fs.defaultFS
2014-03-06 12:28:47,011 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation – mapreduce.job.counters.limit is deprecated. Instead, use mapreduce.job.counters.max
2014-03-06 12:28:47,014 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation – io.bytes.per.checksum is deprecated. Instead, use dfs.bytes-per-checksum
2014-03-06 12:28:47,014 [JobControl] INFO org.apache.hadoop.conf.Configuration.deprecation – mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
2014-03-06 12:28:47,674 [JobControl] INFO org.apache.hadoop.mapreduce.JobSubmitter – Submitting tokens for job: job_1394027471317_0013
2014-03-06 12:28:48,137 [JobControl] INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl – Submitted application application_1394027471317_0013 to ResourceManager at vm38/x.x.x.x:8032
2014-03-06 12:28:48,221 [JobControl] INFO org.apache.hadoop.mapreduce.Job – The url to track the job: http://vm38:8088/proxy/application_1394027471317_0013/
2014-03-06 12:28:48,222 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher – HadoopJobId: job_1394027471317_0013
2014-03-06 12:28:48,222 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher – Processing aliases A,B
2014-03-06 12:28:48,222 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher – detailed locations: M: A[1,4],B[2,4] C: R:
2014-03-06 12:28:48,293 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher – 0% complete
2014-03-06 12:29:06,570 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher – 50% complete
2014-03-06 12:29:09,274 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher – 100% complete
2014-03-06 12:29:09,277 [main] INFO org.apache.pig.tools.pigstats.SimplePigStats – Script Statistics:

HadoopVersion PigVersion UserId StartedAt FinishedAt Features
2.2.0.2.0.6.0-101 0.12.0.2.0.6.1-101 margusja 2014-03-06 12:28:37 2014-03-06 12:29:09 UNKNOWN

Success!

Job Stats (time in seconds):
JobId Maps Reduces MaxMapTime MinMapTIme AvgMapTime MedianMapTime MaxReduceTime MinReduceTime AvgReduceTime MedianReducetime Alias Feature Outputs
job_1394027471317_0013 1 0 7 7 7 7 n/a n/a n/a n/a A,B MAP_ONLY hdfs://vm38:8020/tmp/temp1191617276/tmp1745379757,

Input(s):
Successfully read 46 records (2468 bytes) from: “hdfs://vm38:8020/user/margusja/passwd”

Output(s):
Successfully stored 46 records (528 bytes) in: “hdfs://vm38:8020/tmp/temp1191617276/tmp1745379757”

Counters:
Total records written : 46
Total bytes written : 528
Spillable Memory Manager spill count : 0
Total bags proactively spilled: 0
Total records proactively spilled: 0

Job DAG:
job_1394027471317_0013

2014-03-06 12:29:09,414 [main] INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLauncher – Success!
2014-03-06 12:29:09,419 [main] INFO org.apache.hadoop.conf.Configuration.deprecation – fs.default.name is deprecated. Instead, use fs.defaultFS
2014-03-06 12:29:09,419 [main] INFO org.apache.pig.data.SchemaTupleBackend – Key [pig.schematuple] was not set… will not generate code.
2014-03-06 12:29:17,690 [main] INFO org.apache.hadoop.mapreduce.lib.input.FileInputFormat – Total input paths to process : 1
2014-03-06 12:29:17,690 [main] INFO org.apache.pig.backend.hadoop.executionengine.util.MapRedUtil – Total input paths to process : 1
(root)
(bin)
(daemon)
(adm)
(lp)
(sync)
(shutdown)
(halt)
(mail)
(uucp)
(operator)
(games)
(gopher)
(ftp)
(nobody)
(vcsa)
(saslauth)
(postfix)
(sshd)
(ntp)
(bacula)
(apache)
(mysql)
(web)
(zabbix)
(hduser)
(margusja)
(zend)
(dbus)
(rstudio-server)
(tcpdump)
(postgres)
(puppet)
(ambari-qa)
(hdfs)
(mapred)
(zookeeper)
(nagios)
(yarn)
(hive)
(hbase)
(oozie)
(hcat)
(rrdcached)
(sqoop)
(hue)
grunt>

Posted in Linux, Machine Learning

Posts navigation

Older posts
Newer posts

The Master

Categories

  • Apache
  • Apple
  • Assembler
  • Audi
  • BigData
  • BMW
  • C
  • Elektroonika
  • Fun
  • Hadoop
  • help
  • Infotehnoloogia koolis
  • IOT
  • IT
  • IT eetilised
  • Java
  • Langevarjundus
  • Lapsed
  • lastekodu
  • Linux
  • M-401
  • Mac
  • Machine Learning
  • Matemaatika
  • Math
  • MSP430
  • Muusika
  • neo4j
  • openCL
  • Õpetaja identiteet ja tegevusvõimekus
  • oracle
  • PHP
  • PostgreSql
  • ProM
  • R
  • Turvalisus
  • Varia
  • Windows
Proudly powered by WordPress | Theme: micro, developed by DevriX.